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SUMMARY & CONCLUSIONS 

The complexity of a spare parts prioritization model should be consonant with the 

amount and quality of data available to populate it. When production processes are new and the 

reliability database is sparse and represents primarily expert knowledge, an approximate 

reasoning (AR) based model is appropriate. AR models are designed to emulate the inferential 

processes used by experts in making judgments. We have designed and tested such a model for 

the planned component production process for nuclear weapons at Los Alamos National 

Laboratory. 

The model successfully represents the experts’ knowledge concerning the frequency and 

consequences of a part failure. The use of linguistic variables provides an adaptable format for 

eliciting this knowledge and providing a consistent brisis for valuing the effect on production of 

different parts. Ranking the parts for inclusion in a spare parts inventory is a straightforward 

transformation of the AR output. The basis for this ranking is directly traceable to the elicitation 

results. AR-based models are well-suited to prioritization problems with these characteristics. 
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1. INTRODUCTION 

The industrial practice of maintaining an inventory of spare parts for equipment to 

minimize lost production time is commonplace. Conceptually, the management of such an 

inventory is also straightforward: one wishes to maximize production while minimizing the costs 

associated with the spare parts inventory. In practice, such models can be quite complex, 

depending on the production process, the nature of the equipment and associated failures, and the 

consequences of lost production. For example, one might expect to find a model based on a 

discrete object simulation for the process, individual reliability models for equipment, and 

sophisticated representations of recovery timing and part acquisition times-all of which have 

been benchmarked using historical data for. the production system. In this paper, we consider a 

complex system for which the critical data needed to build a conventional prioritization model is 

lacking. 

The process studied here is the planned production at Los Alamos of components for 

United States nuclear weapons. The essential features associated with the design of a spare parts 

program for this process can be summarizcd as follows. 

- 

- 
- 

- 

The production line is new and under development. 

Some of the equipment is old and not directly replaceable. 

Quantitative reliability data are sparse. 

The times to diagnose the failure, schedule the repair, obtain the needed parts, and 

e€fect the repair are known, at best, in a very uncertain and approximate way. 

Under these circumstances, it is difficult to populate a detailed parts prioritization model. We 

examine whether an AR-based model with data requirements that are commensurate with the 
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sparse and uncertain qualitative data available provides the basis for a logically consistent parts 

prioritization program*. 

Our approach to decision analysis problems with such characteristics is based on the 

theory of AR (Refs. 2 and 3). AR models are designed to emulate the inference process used by 

an expert in making a decision. Our work at Los Alamos has been directed at extensions of AR 

to handle complex systems for which the underlying physical phenomena are incompletely 

understood. Knowledge of such systems normally exists with a group of experts-no single 

expert has a complete understanding of the system. We use deductive logic models called 

process trees to represent this group knowledge (Refs. 4 and 5) .  Process trees are capable of 

representing many possible realizations of a physical process in a single logical equation. We use 

“possible” here in the context of possibility theory (Ref‘. 6). Possibility theory provides a direct 

link between process trees and AR decision models and facilitates hybrid representations of 

uncertainty that make it possible to consistently represent an expert’s confidence in his 

knowledge. Decision-making is a process 1.00 and therefore is amenable to representation with a 

process tree. We refer to this combination of process trees to represent physical and decision 

processes, AR decision models, and the use of hybrid uncertainty measures as logic-evolved 

decision models (LED) (Ref. 7). 

In this paper, we show how AR and the extensions to it incorporated in LED can be 

applied to spare parts prioritization. We present a decision process tree for this problem and 

show how it can be realized in an AR model. The elements and hnctioning of the AR model are 

discussed, and a hybrid representation of uncertainty--fbndamental to the decision process-is 

- 
*In a previous paper, we considered the problem of making reliability assessments for weapons when the available 

data are comparably sparse (Ref. 1). 
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examined. The inputs and uncertainty measures are primarily expert knowledge, and the 

techniques used to elicit this information are described. We present representative results 

obtained using the AK model and discuss the observed performance to date. 

3. DECISION PROCESS TREE 

The starting point for the prioritization model i s  the construction of a decision process 

tree. The tree is a logical representation of the fundamental decision process. A simplified and 

condensed version of the process tree used for this problem is shown in Figure 1. The tree is 

constructed deductively. That is, one begins with a general description of the issue for which a 

decision model is required, here “Prioritization Strategy” (Node A in the figure) and then 

develops in turn the various items that logically constitute such a strategy. 

Page 1 87/19/81 88:48 AM Model: D:\TR55 Modcl\RflMS Dec is lon  Tree.set 

a APRIORSTRRTEGY NODEfl O v e r a l l  p r i o r i t i z a t i o n  s t r a t e g y  

COSTSTRRTEGY f lggregat ion u s i n g  c o s t  a n a l y s i s  
CONSTRRINTS Aggregat ion c o n s t r a i n t s  

FAULTCONSEQUENCE NODE B Consequence o f  a f a u l t  
SHORTFRLLLIKE 

NONE No e f f e c t  on p roduc t i on  
REDUCED F r a c t i o n a l  change i n  p roduc t i on  
DELRYED Delayed e f f e c t  
IMMEDIRTE Sudden and complete l o s s  

RESTTIMEDIST Res to ra t i on  t i  me d i  s t r i  bu t  i o n  
RESTTIME 5 Times assoc ia ted  w i t h  r e s t o r a t i o n  

flGGREGRTE Component f lggregat lon 

3 COMPONENTSTRRT S ing le  component r.1 sk a n a l y s i s  

NODE C L i k e l i h o o d  o f  p roduc t i on  s h o r t f a l l  
DISRUPTION Produc t ion  d’i s r u p t  i on  

WRRNINGTTIME 
PROCUREMENTTIME Time t o  procure  t h e  p a r t  
SETUPTIME 
RE PRIRTIME 
RESTORATIONTIME Pos t repa j r  a c t i v i t i e s  

R E P A I R  
REPLflCE 

RESTSTRATEGY Res to ra t l on  s t r a t e g y  

Figure 1. Process ’Tree for Prioritization Strategy 
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The deductive aspect of the tree development is quickly apparent. The overall process is 

decomposed as a strategy for evaluating each component, and an aggregation operation to make 

judgments among the complete set o f  components is evaluated. The aggregation operation will 

employ a cost strategy and a set of aggregation constraints. It was decided early in the project 

that the aggregation portion of the analysis would be deferred. Instead, the initial prioritization 

would be a simple rank ordering of the components based on a single metric, the output of the 

AR model. 

The natural context in which to evaluate individual components is in terms of risk. For 

this problem, the possible description of “Chnsequence of a Fault Event” (Node B in Fig. 1) 

could be quite detailed, taking into account factors such as the magnitude of the shortfall and the 

sensitivity o f  the overall process to it. howcver, it was clear that the information needed to make 

such distinctions useful did not yet exist. This meant that the primary emphasis would be on the 

likelihood of production shortfalls and that the effect would have to be treated in a simple, 

approximate manner. Logically, ”Shortfall Likelihood” ( Node C )  is determined by the 

“Production Disruption Rate” and the “Restoration Time Distribution.” That is, how often do 

components fail, how badly do they disrupt production, and how long does it take to recover? 

Each of these is developed in the tree in tuin. For example, “Restoration Time Distribution” is 

composed of “Warning Time,” “Diagnosis Time,” “Set Up Time,” “Repair Time,” and 

“Restoration Time.” In the actual tree, each of these is developed in additional detail. 

4. INFERENTIAL MODEL 

The process tree provides the basis for the construction of the inferential model that is 

used to make judgments about the components to be prioritized. There are two basic aspects of 
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the construction process: developing the inferential structure and defining the elements 

associated with the structure that make it possible to arrive at a conclusion. 

The top-level structure of the inferential model used for parts prioritization is shown in 

Fig. 2. It corresponds to the logical structure deduced in the process tree. There is a module that 

deals with the timing and duration of important activities and a module that is concerned with 

conditional production reduction likelihood. Also shown are two simple nodes (A and B in 

Fig. 2). Node A represents the operation of inferring the production loss likelihood, LP, from the 

fault frequency, f, and the conditional likelihood of production loss, Le, and Node B chains this 

result with the time delay attributable to procurement, Atp, to infer production impactt. 

Production impact is related to “Risk for Each Component” in the process tree. 

I 
I ; Dela Attrlbutable 

I Setup Duzion 
I I to brocurement 

I I 
- I 

I 
I 

I I 

I I I 
I I 

biagnOSild Procurement I Repair I 
I Duration I Duration J- Duration 

I 

L-4  I I I 
_.- H I Warning Duration -- 

I I I ’- +----- 
Detection Fault Bsgin Begin Reetoratlon 

Time Time Procurement Repair Time 

Fig. 2. Top level of the inferential structure for prioritization. 

4.1 Operation of an AR Model 

The reader may be unfamiliar with the operation of an AR model. In this section, we 

briefly describe the operators employed in AK. There are three basic operations to be carried out 

This chaining of inferences is characteristic of AR modela. 
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to perform the sequence of evaluations shown in Fig. 2: (1) conversion ofthe input information 

on the parts of interest into the proper form, (2) solution of the forward-chaining inferential 

chain, and (3) translation ofthe output into rnetrics to bin and order the parts for inclusion in the 

inventory. These steps correspond to the ciircled numbers in Fig. 3. 

Step 1 : Conversion ofthe input. The data to be considered can be either 

quantitative (Circle 1 a in Fig. 3) or qualitative (Circle 1 b); both will be converted into the same 

internal form. The data inputs for the timing module for example are quantitative. We will see 

shortly how these inputs are first operated on algebraically to obtain a time delay associated with 

procurement,. A quantitative input is represented by the symbol X in Fig. 3. AR models treat 

variables as linguistics-natural language expressions. 

Numerical Value, X 

Qualitative DaIa,Y 

Fig. 3. Overview of operation of an AR model. 

We denote the corresponding linguistic variable for X i is  X’. We chose to represent the time 

delay with the following descriptors: negligible, small, medium, large. These descriptors are 
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referred to as the universe of discourse, U := {Negligible, Small, Medium, Large). The elements 

in a universe of discourse are treated as fuzzy sets (Refs. 8 and 9). A linguistic variable has 

associated with it a degree of membership vector, D, that defines to what extent it belongs to 

each set. For example, if Atp = 1000 days, then it is surely “large,” and D(Atp) = [0, 0, 0, 11, 

denoting that in this case Atp has only membership in {Large). The assignment of D(X’) given X 

is done using fuzzy set membership functions. The mernbership functions for Atp are shown in 

Fig. 4. For example, a delay time of 5 days corresponds to D(Atp)=[0,.5,.5,0]. The D-vector is the 

internal representation of the linguistic variable “Procurement Time Delay.” 

1 -  

0.75 9 

0.5 * 
c 0 

c 
P 2 0.25. 

03. UUh 
0 0.5 1 3 5 10 15 20 2 5  30 4 0  

Time (Days) 

Fig. 4. Membership Functions for Delay Time, Atp 

Some of the inputs rnay be better expressed qualitatively to begin with; they already are 

in linguistic variable form. The input to the conditional likelihood module in Fig. 2 is “Effect on 

Production,” E. It represents the result of a failure-the effect, given the failure. We use a 

universe of discourse for E of U(E) = {None, Reduced, Delayed, Immediate), where 

“immediate” is understood to mean instantaneous and complete. The assignment of D(E) is done 

by interpreting the expert elicitation. For example, if the expert judges that the part failure could 

result in either immediate or a delayed effect, with immediate more likely, then this would be 
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encoded as D(E) = [0, 0, .25, .75]. This can be interpreted as a “degree of belief.” We will 

consider the possible interpretations of D-vectors and their relationship to uncertainty in more 

detail below. 

Step 2: Solution of the injerence chain. The fundamental logical operation in AR is implication, 

which is performed at each inference node in the model. As seen in Fig. 3, the node has multiple 

inputs-the antecedents, {A-and a single output-the consequent, C-all with their 

corresponding universes of discourse. For simplicity, consider the case where there are two 

elements in {A}, {a, p} . The inference drawn is of the form 

“a is a1 and p is pj, And Ifal and pj Then ck Therefore Ck”, 

where i, j, and k refer to particular elements in the respective universes of discourse. This 

statement is a tautology, hence the justification for the use of the word “therefore.” The 

assignment of k given i and j is done with ix rule base. This rule base describes how a 

combination of antecedent fizzy sets implies a particular set in U(C). To make this concrete, 

consider Node A in Fig. 2. The universes af discourse for the antecedents are U(Lc) = (Very 

Unlikely, Unlikely, Likely, Nearly Certain} and U(f) = {Rare, Seldom, Anticipated, Routine}. 

The consequent is “Production Loss Likelihood”, L p  with U(Lp) = U(Lc). The reader will 

recognize that this inference looks like the product of a conditional probability and a frequency. 

The rule base for this node is given in Table 1. The shaded entry is the rule Iff is Seldom and LC 

is Likely then L p  is Unlikely. 
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Table I 

Rule Base for Likelihood of Production Loss 

Rare 
Seldom 

Anticipated 
Routine 

-- 
Very Unlikely 
Very Unlikely 
Very Unlikely 
Very Unlikely 
Very Unlikely 

Recall that both antecedents are represented internally as D-vectors, and in general, these 

vectors will have more than one non-zero entry. This means that multiple rules, and therefore 

assignments of LP, are occurring simultaneously. A consistent resolution of this situation is 

obtained using the max-min rule (Ref. 8). ‘This can be expressed as 

Max (Min(Ir,,cr,)) . 
’3 z z  V(n,m)-+R 

In this formula, K,, and om are elements n and m of fuzzy input membership vectors K and 0, and 

3 is a particular element output by the rule. For example, assume that D(f) = [0, 0, .25, .75]-the 

failure frequency has no membership in the sets “Rare” or “Seldom” and non-zero membership 

in “Anticipated” and “Routine”S and D(Lc) = [O,  .3, .9,0], corresponding to non-zero 

membership in “Unlikely” and “Likely.” Aqplying the max-min operator to these D-vectors 

yields D(Lp) == [0, .3, .75,0]. 

Step 3 :  Translation ofthe output into rnetrics. The result of a set of forward-chained inferences is 

a single consequent and one D-vector. In our model, this is “Production Impact”, I with 

U= {Negligible, Small, Medium, Large}. To use I as our metric for ranking parts for inclusion in 

$There is no requirement that the set rnemberships sum to 1 .O 
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a spare parts inventory, it must be converted to a single numerical value that reflects the meaning 

of the D-vector. This process is called defu:zzification. We have discussed defuzzification in the 

context of a an AR model at length in a previous paper (Ref. 10) and restrict ourselves here to a 

short summary. 

The first step in defuzzification is to define membership functions, Mi{I} (i = 1, 

Length[U {I)]), similar to those in Fig. 4, for the fuzzy sets in U {I), These membership functions 

should be chosen so that there is an approximate relationship between the intervals where they 

are defined and the linguistics. We then find the fuzzy union of the sets defined by 

C UDiMi , i = 1, Length[U('I[)] 
i 

Fuzzy union is a max operation suggested by the graph in the lower right part of Fig. 3. The 

result is the outer envelope of the membership functions weighted by the numerical values in 

D(1). If we view this union as a possibility distribution, then it is natural by the analogy with 

probability to compute an expected value, A as 

A(I)=SxC(x)dx/SC(x)dx . 

This is referred to as centroid defuzzification and provides a numerical value for ranking 

purposes. The membership functions can be adjusted so that the centroid values approximately 

reflect the set linguistics scale. It is also possible to convert the centroid into a non-fuzzy 

linguistic by selecting the set for which the centroid has the maximum degree of membership 

denoted as L(h). We then use h to order and L(h) to bin the I vectors for each spare part. Note 

that because several time durations are represented in the model as random variables, it follows 

that h and L(h) are random variables as well. We will discuss this aspect of the model further in 

Sec. 5.  With these preliminaries, we are now ready to take a closer look at the details of the 

model of Fig. 2. 
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4.2 Attributable Delay Time Module 

The outputs of the timing module are measures of the delays attributable to procurement 

and nonprocurement sources. The relationship of the timing factors is shown in Fig. 5 .  The initial 

datum is the detection time. If €ailure is not immediate, then there is a warning period, at the end 

of which failure occurs. We present results showing the effect of warning time. It is assumed that 

procurement will not begin until diagnosis of the problem is complete. In contrast, we assume 

that setup will begin immediately upon detection. This is conservative relative to the effect of a 

part’s failure. It also reflects the reality that preparations for repairs in a nuclear facility can be 

very complex and time-consuming and that the process owners are well aware of this fact. The 

situation shown in Fig. 5 corresponds to the case where procurement is the critical path item, Atp 

>O; setup is completed before the new part is available. Thus, the repair process is held up 

waiting for the part. Note that if a spare were available, then the procurement phase would be 

complete at the conclusion of the diagnosis period. The durations are treated as uniformly 

distributed random variables. The endpoints of these distributions correspond to lower and upper 

bound estimates obtained from the SMES.’ 

; Dela Attributable 
I to &rmumment 

! s t u n  Duration 

I I 
I 

I I 

I 
I 
I 

I I 

I 

I I Duratlon I J- Duratlon I Duratlan 
r.- =I( 

Warning Dura%- I I I 
I I I I I 
I I I 

-4- “I- 
Detection Fault Begin Begin Restoration 

Time Time Procirrement Repair Time 

‘We have found the use of a uniform distribution to represent an expert’s estimate for the range of a numerical 

quantity such as time duration to be generally consistent with how experts estimate such quantities. 
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Fig. 5, Timing relations associated with production interruption 

4.4 Conditional Production Loss Likelihood Module 

This part of the AR model was revised several times because of difficulties encountered 

in eliciting the required information. The following approach was found to be a reasonable 

compromise between the desire for a detailed, elegant model and the realities of interacting with 

SMEs who are unfamiliar with the concepts o f  AR and probability and are extremely busy trying 

to bring production on line. We were concerned with eliciting LC directly from the experts 

because it would be difficult to document their reasoning and it was clear that delayed or partial 

losses would be poorly represented. We chose instead to elicit information on the effect of the 

production change (E) resulting from a component failure. We used multiple rule bases similar to 

Table I to evaluate the relative importance of delayed or reduced production. The D-vector from 

this chain is combined with the “none” and “immediate” effects in a four antecedent rule base to 

obtain Lc. D(Lc) is the output from this module and is the antecedent for Node A discussed 

earlier. 

4.5 Determination of Effective Production ,Tmpact 

** 

At this point, both of the antecedents to Node A in Fig. 2 have been calculated. The 

consequent here is the effective production impact associated with failure of the part, I. The 

inference is performed using the rule base in Table I1 and the max-min operator. Reference to 

Table I1 shows that I is of the functional form I(magnitude of consequence, frequency). 

Therefore, the linguistics used to represent production impact apply equally well to risk and 

provide the lirlk back to the decision proce,, ‘*s tree. 

*I Most of the SMEs are technicians who are very farniliar with part of the process and the associated equipment. 
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Table I1 

Rule Base for Production Impact 

5 .  FUZZY SETS AND UNCERTAINTY IN ART? 

We have made several references above to “degree of belief in reference to D-vectors. To 

interpret a D-vector properly, it is necessary to discuss briefly the relationship between fuzzy 

sets, possibility, and sources of uncertainty. Fuzzy sets are most often used to represent 

ambiguity. Arnbiguity arises when it is not possible to assign an object to a single set. For 

example, is a room “Cold,” “Comfortable,” “Hot,” or somewhere in between? Memberships in 

fbzzy sets vary smoothly, so we can easily represent situations where the temperature is 

perceived to be “in between”. Another usefil perspective exists. One can interpret a degree of 

membership as a measure of the possibility that an object belongs to a set. That is, the 

assignment of set memberships induces a possibility distribution. When linguistic variables are 

used to represent concepts such as “conditional probability” or “likelihood,” it is this latter 

interpretation that is operative. That is, the set memberships are a measure of outcome 

uncertainty. 

Possibility is an imprecise outcomei uncertainty measure. A precise measure is 

probabilityqtt The choice of which measure to use will depend on the available data. When 

For a more detailed discussions of these issues set: References 6 and Fuzziness and Probability by S .  Thomas 

(Ref.11) 
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sufficient data exist to construct an acceptable probability model or where the expert description 

of outcome uncertainty is best represented i ls a probability distribution, then it is preferable. For 

most cases involving large amounts of episternic (state of knowledge) uncertainty, we have 

found possibility measures to be more compatible with expert knowledge and judgment. Both 

possibility and probability are used in the prioritization model. AR models are able to aggregate 

the various aspects of uncertainty using rule bases. We refer to such aggregations as hybrid 

uncertainty. 

6. ELK1 TA TION PROCESS 

The spare part prioritization project is a small part of the much larger effort to 

manufacture weapon components. This meant that a complete flow sheet on the planned process 

was available and that SMEs for each aspect of the process had already been identified. The 

value of an AK model is strongly dependent on the design of the elicitation program (Ref. 12). 

We developed a standard elicitation form in co-operation with several SMEs who were willing to 

participate in a pilot program. Following testing of the finalized elicitation program, the major 

elicitation began. 

The elicitation began by asking each previously identified SME what manufacturing 

responsibilities he/she had. These were tied to the process flow sheet. For each identified 

subprocess, the expert was asked to generate an equipment list. The failure modes were 

identified for each item of equipment. For each failure mode, the expert explained whether the 

equipment was replaced or repaired. If repair was the preferred option, then the parts needed 

$$Probability satisfies the law of the excluded middle. Possibility and fuzzy sets do not and are therefore described as 

imprecise. 
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were identified. These parts are candidates for inclusion in the spare parts inventory and are the 

objects to be rank-ordered. The SMEs were: given copies of the elicitation package before the 

elicitation session. The package includes a complete glossary describing each of the variables 

and explanations of the set descriptors used to represent them. 

7. PRIORITI%ATlolv RESULTS 

To date we have analyzed the data from 5 SMEs covering approximately 40 parts. Figure 

5 shows the median production impact centroids for these parts for the base case (without 

warning) and with warning. A number of observations can be made. For about half the parts 

examined, either the SME responded that failure of the part would have no effect on production 

because redundant equipment is available c)r the expected delays are attributable to set up, not 

procurement. Such parts have small values of h and do not need to be included in a spare parts 

inventory. For several parts (1 8-20), the e€fect of warning time was observable; the warning time 

duration was comparable to the procurement duration. Parts with large A’s are ones that stop 

production immediately upon failure, fail fairly frequently and have long procurement times that 

exceed set up requirements. Even when warning time is available for these parts, the duration is 

too short to a€fect the production impact. These are good candidates for the spare parts 

inventory. 
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Figure 5.  Median prioritization results 

As noted earlier, the timing duration data from the experts are represented as uniform 

random variables. In some cases the ranges given for the procurement and warning times can 

vary significantly. In such cases it is important to consider the probability distribution function 

for I. Typically we present the binned and ranked results at the median and ninetieth percentiles. 
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Objective: Design a spare parts prioritization model 

Process haracter ist i csr 

development 

replaceable 

for a produc#On process 

- the production line is new and sander 

- some of the equipment is old and not directly 

- quantitative reliability data is sparse 
- the times to diagnose the failure, schedule the 

repair, obtain the needed parts and effect the 
repair are known, at best in a very uncertain 
and approximate way. 

These factors make i f  diffi~ult to populate a 
conventional model 

2 



Approach: Use approximate reasoning to represent 
the data and design an inferential ,model compatible 
with the problem characteristics. 
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inferential Structure 

Timing 
Estimates - 

Production 
Effects 
4 

Procurement 
& Setup Time 
Attributable 

eiays, 
At 

Pari 
Priorities 

Conditional 
Production 

Loss 
Likelihood, 

LC 

A I Production 
Loss 

Likelihood, Lp 

Fault 
Frequency, f 5 



AR Operators 

Rule base 
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Time Delays and Linguistic Variables 
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Making Inferences - 1 
8 Setup Time 
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Production 
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Production 
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Making Inferences - 2 

Procurement Time Delay f 

{None, Small, Medium, Large} 

Production Impact 
te, Large, Very Large} 

Antecedents Consequent 

Production 
moderate to large Production Loss Likelihood 

{Very Unlikely, Unlikely, Likely, Nearly Certain} 
impact is 
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Defuzzification 

Fuzzy Union 
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c 
Input 

Connections 

L I . I I I I I I L +  

Expert Elicitation - 1 
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Expert Elicitation - 2 

Failure Characterization 

aillcre Frequency 

(Rare: Never expected to occur during project 
lifetime; Sekfem: Surprised If occurs during 
project lifetime, Anticipated Occurrence once 
every couple of years Routine: Occurs one or 
more times per year) 

Elicited Set Memberships LO, 11 
Rare Seldom Anticipated Routine 
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Production Impact Centroid Results 

BaseCasebnDact 
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Production Loss Likelihood: Likely 

Failure frequency: Anticipated 
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Conclusions 

0 AR is a good to 
knowle 
@The R orocess tree 
comprehensive and reviewable inferential 

@An AR ranking process is consistent and 
traceable - ensures that parts are purchased 
based upon a commonly accepted risk 
model. 
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